Administrator
(0 votes)

Genomics England News

Whole Genome Sequencing to diagnose TB

Public Health England has announced that Whole Genome Sequencing (WGS) is now being used to identify different strains of tuberculosis (TB).

This is the first time that WGS has been used as a diagnostic solution for managing a disease on this scale anywhere in the world.  The technique, developed in conjunction with the University of Oxford, allows faster and more accurate diagnoses, meaning patients can be treated with precisely the right medication more quickly. Where previously it could take up to a month to confirm a diagnosis of TB, confirm the treatment choices and to detect spread between cases, this can now be done in just over a week by Public Health England’s Birmingham laboratory. This slows the spread of the disease and boosts the fight against anti-microbial resistance.

This world first service has been developed in partnership with Genomics England, National Institute for Health Research (NIHR) and Wellcome Trust. The implementation of this technology will contribute to achieving the aims of the 100,000 Genomes Project.

Health Secretary, Jeremy Hunt, said:

“The UK has a proud history of leading the world in science and innovation – this is another global first for our country. These pioneering techniques will change patients’ lives in the NHS as well as being used across the globe to slow the spread of a terrible disease and take the fight to drug resistant infection.”

Professor Mark Caulfield, Chief Scientist at Genomics England, said:

“Genomics England are delighted to fulfil the transformative ambition of the 100,000 Genomes Project infectious disease programme for the NHS by finding a faster, better diagnostic approach for a tuberculosis which is a major infectious disease causing many deaths world-wide.”

Professor Derrick Crook, Director of National Infection Service, Public Health England, said:

“The use of whole genome sequencing to diagnose, detect drug resistance and very accurately type TB is a world first for any disease on this scale. By working closely with our partners, we are now able to use cutting edge science to effectively treat these patients with the right medicines quickly. We are immensely proud of the contribution this makes to the prospects of better treatment of TB globally. This approach will also increasingly be used for many other infectious diseases. Our ambition is to achieve this as quickly as possible so many infections can be better diagnosed and treated.”

The work has been supported by the NIHR Oxford Biomedical Research Centre, a partnership between Oxford University Hospitals NHS Foundation Trust and the University of Oxford to enable clinical research for patient benefit and foster innovation to improve healthcare.

 

Whole genome analyses for cancer returned to the NHS within three weeks

One key aim of the 100,000 Genomes Project is to improve cancer care for NHS patients. Whole genome sequencing in cancer can enable clinicians to choose better treatments and improve outcomes for patients through personalised medicine.

While the Project continues to recruit patients and develop the infrastructure for interpreting genomic data at scale, we are delighted that the first four cancer whole genome analyses from our ‘fast track’ project have been returned to the NHS in 18 working days of patient samples being dispatched to our whole genome sequencing pipeline.

Our ‘fast track’ project aims to provide cancer analyses within a timeframe that will help in clinical decision-making and care. It is a major part of our plans to build a sustainable legacy for cancer whole genome sequencing.

Further work is needed so the pathways for sample processing and data analysis in whole genome sequencing can be fully accredited for diagnostic use. NHS laboratories will now confirm our reported findings with a standard accredited test, before using the information to guide clinical management.

Chief Scientist, Professor Mark Caulfield says:

“During the early stages of our cancer programme, most patients will not see a personal benefit as we develop the tools, processes and systems to analyse genomes at scale. But this first set of fast-track results is very promising and confirms that we can return whole genome analyses in time to provide better outcomes for NHS patients.”

Throughout 2017 and 2018, we will return results for patients in both rare disease and cancer at pace.

Contact Us

University of Liverpool

Block A: Waterhouse Buildings

1-5 Brownlow Street

Liverpool L69 3GL

Email: cjmcn@liverpool.ac.uk

Follow us